
Growing Object-Oriented 
Software



"One must learn by doing the thing; for 
though you think you know it, you have no 

certainty until you try." - Sophocles

Chapter 1: What is the 
Point of Test-Driven 

Development?



Software as a Learning Process

Almost all software projects are attempting 
something that nobody has done before (or at 
least nobody in the organization has done 
before).

Everyone involved in the project has to learn as 
it progresses. They need a process that will 
help them cope with uncertainty as their 
experience grows - to anticipate unanticipated 
changes.



Feedback is the Fundamental Tool

The best approach a team can take is to use 
empirical feedback to learn about the system 
and its use.

Every time a team deploys, its members have 
an opportunity to check their assumptions 
against reality.

Without deployment, the feedback is not 
complete.



Feedback is the Fundamental Tool

At each deployment we can:

● Measure how much progress we're really 
making

● Detect and correct any errors
● Adapt the current plan in response to what 

we've learned.



Feedback Loops

Development can be broken up into a system 
of nested feedback loops, such as:
● Pair Programming
● Unit Tests
● Acceptance Tests
● Daily Meetings
● Iterations
● Releases
● etc...



Feedback Loops

http://www.extremeprogramming.org/map/images/loopsml.gif



Feedback Loops

Each loop exposes the team's output to 
empirical feedback so that the team can 
discover and correct any errors or 
misconceptions.

The nested feedback loops reinforce each 
other; if a discrepancy slips through an inner 
loop, there is a good change an outer loop will 
catch it.



Feedback Loops

The inner loops are more focused on the 
technical detail: what a unit of code does, 
whether it integrates with the rest of the 
system.

The outer loops are more focus on the 
organization and the team: whether the 
application serves its users' needs, whether the 
team is as effective as it could be.



Incremental and Iterative 
Development

In a project organized as a set of nested 
feedback loops, development is incremental 
and imperative.



Incremental and Iterative 
Development

Incremental development builds a system 
featured by feature. Each feature is always 
implemented as an end-to-end "slice" through 
all relevant parts of the system.

Iterative development refines the 
implementation of features in response to 
feedback until they are good enough.



Practices That Support Change

First, constant testing is needed to catch 
regression errors, and allow addition of new 
features without breaking existing ones.

Frequent manual testing is impractical, so we 
must automate testing as much as we can to 
reduce the costs of building, deploying, and 
modifying versions of the system.



Practices That Support Change

Second, the code needs to be as simple as 
possible, so it is easy to understand and 
modify.

Simplicity takes effort, so we constantly refactor 
our code as we work with it - to improve and 
simplify its design, to remove duplication, and 
to ensure that it clearly expresses what it does.



Test-Driven Development

The cycle at the heart of TDD is: write a test; 
write some code to get it working; refactor the 
code to be as simple as possible.

TDD can give us feeback on the quality of both 
implementation ("Does it work?") and design 
("Is it well structured?")



The TDD Cycle

http://www.kitware.com/blog/files/15_788403459_TestDrivenDevelopment.png



Writing Tests

● Makes us clarify the acceptance criteria for 
the next piece of work

● Encourages us to write loosely coupled 
components, so they can be easily tested in 
isolation and, at higher levels, combined 
together

● Adds an executable description of what the 
code does

● Adds to a complete regression suite



Running Tests

● Detects errors while the context is fresh in 
our mind

● Lets us know when we've done enough, 
which discourages the addition of 
unnecessary features



The Golden Rule of TDD

Never write new functionality without a failing 
test.



Test-Driven Development

The effort of writing a test first gives us rapid 
feedback about the quality of our design ideas - 
that making code accessible for testing often 
drives it towards being cleaner and more 
modular.



The Bigger Picture

When we're implementing a feature, we start by 
writing an acceptance test, which exercises the 
functionality we want to build.

Underneath the acceptance test, we follow the 
unit test / implement / refactor cycle to develop 
the feature.



The Bigger Picture

http://www.planetgeek.ch/wp-content/uploads/2012/06/ATDD-cycle.png



The Bigger Picture

The outer loop is a measure of demonstrable 
progress, and the growing suite of tests 
protects us against regression failures when we 
change the system.

Acceptance tests are distinguished between 
tests we're working on, and tests for features 
that have been finished (which must always 
pass).



The Bigger Picture

The inner loop supports the developers. The 
unit tests help us maintain the quality of code 
and should pass soon after they've been 
written.

Failing unit tests should NEVER be committed 
to the source repository.



Testing End-to-End

Whenever possible, an acceptance test should 
exercise a system end-to-end without calling 
any internal code.

An end-to-end test interacts with the system 
only from the outside: through its user interface, 
by sending messages as if from third-party 
systems, by invoking its web services, by 
parsing reports, etc.



Testing End-to-End

An automated build, usually trigger by someone 
checking code into the source repository, will:

● check out the latest version
● compile and unit-test the code
● integrate and package the system
● perform a production-like deployment
● exercise the system through its external 

access points



Levels of Testing

● Acceptance: Does the whole system work?
● Integration: Does our code work against 

code we can't change?
● Unit: Do our objects do the right thing, and 

are they convenient to work with?



Acceptance Tests

Help us understand and agree on what we are 
going to build next.

They also help us make sure we have not 
broken any existing features as we continue 
developing.



Acceptance Tests

"Developers are responsible for proving to their 
customers that the code works correctly, not 
customers proving the code is broken."

http://www.extremeprogramming.org/introduction.html



Integration Tests

Refers to tests that check how some of our 
code works with code from outside the team 
that we can't change, such as a persistence 
mapper.

Integration tests make sure that any 
abstractions we build over third-party code 
work as we expect.



External and Internal Quality

External quality is how well the system meets 
the needs of its customers and users (is it 
functional, reliable, available, etc.)

Internal quality is how well the system meets 
the needs of its developers and administrators 
(is it easy to understand, easy to change, etc.)



External and Internal Quality

Internal quality is what lets us cope with 
continual and unanticipated change.

The point of maintaining internal quality is to 
allow us to modify the system's behavior safely 
and predictably.



Acceptance Tests

Running acceptance tests tells us about the 
external quality of the system, and writing them 
tells us how well we understand the domain.

However, end-to-end tests do not tell us how 
well we've written the code.



Unit Tests

Writing unit tests give us a lot of feedback 
about the quality of our code, and running them 
tells us that we haven't broken any classes.

However, unit tests don't give us enough 
confidence that the system as a whole works.



Integration Tests

Fall somewhere in the middle of unit tests and 
acceptance tests, in terms of internal and 
external quality.



http://meekrosoft.files.wordpress.com/2010/10/gooagbt-chart.png

External and Internal Quality



External and Internal Quality

Thorough unit testing helps us improve the 
internal quality because, to be tested, a unit 
has to be structured to run outside the system 
in a test fixture.

For a class to be easy to unit test, the class 
must have explicit dependencies that can be 
easily substituted, and clear responsibilities that 
can be easily invoked and verified.



Coupling and Cohesion

Elements are coupled if a change in one forces 
a change in the other. For example, if two 
classes inherit from a common parent, then a 
change in one class might affect the other.

An element's cohesion is a measure of whether 
its responsibilities form a meaningful unit. For 
example, a class that parses both dates and 
URLs is not coherent.


